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ABSTRACT

Numerical pulse propagation studies using two classical ocean waveguide models

are performed. The first model is a pressure-release surface with a rigid bottom. The

second model is a pressure-release surface with a fluid bottom. The analysis of the

two models is based on normal mode theory assuming a constant speed of sound in the

ocean. The magnitude and phase of the complex acoustic pressure field as a function

of frequency is calculated across a planar array of hydrophones. The time-domain

output electrical pulse from the center element in the array is also computed. The

computer simulation results for the two models are compared and discussed.
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I. INTRODUCTION

In this thesis two classical ocean waveguide models are examined and compared

in order to draw conclusions concerning their differences. The two models that are

examined are the following:

a. pressure-release surface with a rigid bottom, and

b. pressure-release surface with a fluid bottom.

It is well known that the first model (i.e., the rigid bottom model) is not a

realistic one. Although the assumption of a pressure-release surface is valid, the

assumption of a rigid bottom is not. Therefore, the main purpose of this thesis is

to verify how differently this model performs compared to the second one (i.e., the

fluid bottom model) which is theoretically a more realistic model. The complete

theoretical analysis of these two models is well known and is presented in detail, for

example, in Refs. 1, 2, or 3. Based on these references, an overview or sur . y of

the analytical expressions and relations used in the computer simulation program is

included in Chapter II. Chapter II provides the necessary information and theoretical

backgrouTd on the way the waveguide models are approached and implemented in the

computer program. Discussion concerning the way some problems encountered during

the implementation of the models have been resolved is also included in Chapter II.

In order to be able to compare the two models and to decide on the effectiveness

of each one, the models are examined under a relatively wide range of different cases.

The models are tested for various transmitted signals, that is, Hamming-envelope and

rectangular-envelope continuous wave (CW) and linear-frequency-modulated (LFM)

pulses. The location of the receiver is varied also, that is, the receiver is located

at different ranges from the source (short-range and long-range) and also at differ-

1



ent depths (above and below the source). The source is an omnidirectional point

source, located at the rectangular coordinates (0,0, zo) where z0 is the depth. The

receiver used for all the investigated cases is a 9x9 planar array of point elements

(hydrophones), where the center element has the coordinates (XR, MR, ZR).

The computer simulation results for each model and for the various cases are

presented and analyzed in Chapter III. The computer simulation results which are

used in order to compare the two models are (i) the resulting output time-domain

electrical pulse from the center element in the receive array and (ii) the characteristics

of the complex acoustic pressure field (magnitude and phase as a function of frequency

at each point of the field) when various input electrical signals at the source are

transmitted through each model. The benefit of having these output results accurately

and correctly calculated is that they can directly support studies in the area of target

localization (i.e., estimating the range and the depth of the source) based on matched-

field processing techniques [e.g., see Refs. 4 and 51.

The two models are compared based on the computer simulation results and

the differences between them and some concluding remarks are included in Chapter

IV.

2



II. TWO CLASSICAL OCEAN WAVEGUIDE
MODELS

In this chapter the two classical ocean waveguide models are presented and

explained from a theoretical point of view. A simple ocean waveguide model is il-

lustrated in Fig. 2.1. Note that the ocean surface and bottom are assumed to be

flat.

The notation used for the presentation of the models is as follows:

Medium I: Air

Medium II: Sea Water

Medium III: Ocean Bottom

pi, i=1,2,3: the constant densities ( k -) of the three fluid media.

ci, i=1,2,3: the constant speeds of sound (--) of the three fluid media.

PICI, P2c2, P3 C3 : the characteristic impedances (in rayls = P ) of the three

fluid media.

An omnidirectional, time-harmonic, point source is located in medium II at

r = 0 and depth z = z0 meters. The ocean depth is D meters. For both models,

the boundary at z = 0 (i.e., the ocean surface) is treated as an ideal pressure-release

boundary, which implies that no acoustic field will be present in medium I due to

the source located in medium II. Both transmitter and receiver are stationary (not

in motion). The analysis of the models is based on normal mode theory with the

assumption of a constant speed of sound in the ocean.

3
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Figure 2.1 Ocean waveguide model.
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A. PRESSURE-RELEASE SURFACE WITH A RIGID BOTTOM

This is the simplest of the two models, where the boundary at z = D (i.e., the

ocean bottom) is treated as an ideal rigid boundary, which implies that no acoustic

field will be present in medium III due to the source located in medium II. For this

model, the acoustic field due to the source located in medium II will be present only

in medium II and no acoustic field will exist in media I and III.

The complete derivation of the expressions for the velocity potential and the

acoustic pressure in medium II for this waveguide model is well known and can be

found, for example, in Refs. 1, 2, or 3. In this thesis the equations and notation

presented in Ref. 3 are used. A summary of the results of the analysis is presented

and briefly discussed below:

The complete normal mode solution for the time-harmonic acoustic pressure in

medium II at a point of cylindrical coordinates (r, i, z) is given by

p 2(t,r, 0,z) = -- sin(kz2 ,, zo)H 2)(k 2,,.r)sin(kz2,,z)e+21r (2-1)

where the zeroth-order Hankel function of the second kind for the far-field case (i.e.,

k, 2, r > 1) is approximated by

S2 j (4,

H( 2)(kr2.,r) . rk e-,".r-) nk r > 1 (2-2)
7"r2,. r'

and P0 is the peak acoustic pressure amplitude in pascals at the omnidirectional point

source. The pulse propagation solution for this waveguide model shall be obtained

by using Eq. (2-1) as the starting point and will be discussed in Section C.

The wave number k2, in radians per meter, is given by

k2 2- 2r (2-3)
C2 = 2

where f is the frequency of the source in hertz. The propagation vector component

in the z-direction, which is only allowed certain discrete values, is given in radians



per meter by

k.2= k2,. =(2n + 1)-"
Z2,- 2D n=0,1,2 (2-4)

The set of functions sin (kz2,z), n = 0, 1,2, ..., are referred to as the eigenfunctions

or normal modes and the set of values k..,,, n = 0, 1,2, ... , are referred to as the

eigenvalues. The normal modes describe the natural modes of vibration within the

waveguide.

The propagation vector component in the radial direction for the nth normal

mode, in radians per meter, is given by

k,2 =kr2 ,n = { VQ~)~ Kff (2-5)
-Jk2v 2 -1,f < fn

where f, is the cutoff frequency for the nth mode, in hertz and is given by

f- (2n + 1)c2 , n=0,1,2, .... (2-6)

4D

For a given value of source frequency f, the nth mode will be a propagating mode

only if f > f,. If f < f,, then the nth mode is an evanescent mode (i.e., a decay-

ing exponential). The total number of propagating modes Np excited by a source

frequency of f hertz, is given by

N =INT[~4f1]+ (2-7)

where INT[.] means form an integer by simply truncating the decimal portion of the

real number inside the square brackets. One is added to the result since the first or

lowest mode is mode n = 0. Additional information concerning this model is given

next.

The angle of propagation for the nth normal mode is given by

02.,n=Sin - 1  1- f, fn, n = 0,1, 2, ... (2-8)

6
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Figure 2.2 Propagation vector components of the nth normal mode.

where f, is given by Eq. (2-6). The relationship between the propagation vector

components k 2. and k.2., , the wave number k2, and the angle of propagation 02,n

for the nth mode is shown in Fig. 2.2.

The group speed in the radial direction of the nth propagating mode, in meters

per second, is given by

2

C%,. = c2  1- ) , f>f,, n=0,1,2,... (2-9)

The radial group speed is the speed at which energy propagates in the radial direction

and is a function of frequency f. Therefore, the energy associated with different

frequency components will propagate at different speeds. As a result, for a particular

mode n with cutoff frequency f, the high frequency components from a transmitted

pulse will arrive at a receiver ahead of the low frequency components. Therefore, due

to this dispersion of energy, the shape of the transmitted pulse will be distorted at

7



the receiver.

Finally, the energy E, contained in the nth eigenfunction is given by

D .
En =D n=0, 1, 2,... (2-10)

and the time of arrival, in seconds, at the receiver of the nth propagating normal

mode is given by

t - (2-11)
C912,n

where r is the horizontal (polar) range between source and field points.

B. PRESSURE-RELEASE SURFACE WITH A FLUID BOTTOM

In this model the boundary at z = D is treated as a boundary between two

different fluid media-which is more realistic-instead of as an ideal rigid surface.

For the fluid bottom model an acoustic field will, in general, be present in medium

III due to the sound source located in medium II.

Once again, the complete derivation of the expressions for the velocity potential

and the acoustic pressure in medium II for this waveguide model is well known and can

be found, for example, in Refs. 1, 2, or 3. In this thesis, we shall use the equations

and notation developed in Ref. 3. The analysis is based on the assumption that

c3 > c2 and some of the results, which are used by the computer simulation program,

are briefly summarized below:

The complete normal mode solution for the time-harmonic acoustic pressure in

medium II at a point of cylindrical coordinates (r, 0, z) is given by
PNt-1

p2(t,r, 0,z) EP - sin(kz2,.zo)H(2)(k2,. r)sin(kz2,.z)e+J2t (2-12)

8



where E,, is the energy contained in the nth eigenfunction and is given byD
- , 0 2,. = 0 c, n = 0,1, 2,...

En= 2Dk,,. -sin (2k 2,D) -2 2) tan (k2,. D) s2 (k 2,.D),
P32, Oc <5 02,n < 1

(2- 13)

and H 2)(k,2,n) is approximated by Eq. (2-2).

For a given value of source frequency f, the allowed directions of propagation

in medium II correspond to the roots 02 - 0 2,n , n = 0, 1,2, ..., of the following

transcendental equation:

tan DCOS02 + P3c 3 COS0 2  =0, 3>C2, 0c<02<

C2 P2C  2 sin 0,22P22 2sm06j - 1

(2-14)

where Oc is the critical angle of incidence at the ocean bottom and is given by

= Sin-' (), c3 > c2 . (2-15)

Once the angles (roots) 0 2,n are calculated, then the propagating normal modes are

known since the propagation vector for the nth propagating mode in medium II can

be expressed as a function of the components k2,n and k32,n in the r and z directions

given by

kr2 ,, = k2sin 02,n , (2 - 16)

and

k.2,n = k2cos 02,n . (2- 17)

Note that for 02 = POE, the plane-wave mode is defined. In reality, there is no plane-

wave mode propagating, since for 02 = 900 in Eq. (2-17), we obtain k.,. = 0 and,

therefore, sin(k.2,.) = 0 in Eq. (2-12). As a result, the contribution of this mode to

the acoustic pressure in medium II is zero. The pulse propagation solution for this

9



waveguide model shall be obtained by using Eq. (2-12) as the starting point and will

be discussed in Section C.

The normal modes corresponding to the roots 02,., n = 0, 1, 2, ... of Eq. (2-14)

are known as trapped modes. These modes are "trapped" in medium II since (i)

the complex reflection coefficient at the ideal pressure-release ocean surface has a

magnitude of unity, for every value of the angle of incidence, and (ii) the complex

reflection coefficient at the fluid ocean bottom also has a magnitude of unity, for the

angles of incidence in the range 0, <5 i = 02,n < 900, where Oi refers to the angle

of incidence. The cutoff frequency f,,, in hertz, for the nth trapped normal mode is

given by
(2n + 1) c2
4Dos9 ' n=0,1,2,... (2-18)

The total number of trapped normal modes Nt excited by a source frequency f hertz

is given by

Nt= INT[ l (4DfcosOc - + 1. (2-19)

Finally, the group speed in the radial direction, in mcters per second, of the nth

trapped mode is given by

r2 k = C2 k 2,n> fn , n = 0, 1,2, ... (2-20)c9"2 =2?rf

and the time of arrival at the receiver of the nth trapped mode in seconds is given by

Eq. (2-11).

C. COMPUTER IMPLEMENTATION OF THE MODELS

In order to examine and compare the two ocean waveguide models by using a

computer simulation approach, the models are implemented by a computer program

written in the Fortran 77 programming language. The basic techLiques used by the

program are (i) discrete time representation (sampling) of continuous time signals and

10



(ii) using complex envelope representations for the transmitted and received signals.

The computer program is constructed using the block structure approach and it is

composed of subprograms which are used to perform the computations involved in

the various steps of the problem. Among these subprograms, the most important are

(i) the signal generator for the transmitted electrical signal, (ii) the resulting time-

domain output electrical pulse from the center element in the receive array, and (iii)

the calculation of the roots of the transcedental equation for the fluid bottom model.

The signal generator subroutine was developed and tested during a previous

related thesis work [Ref. 6]. It is used as a tool in this thesis and it has been included

in the computer program structure with no changes. However, care has been taken

in order to create a more accurate representation of rectangular-envelope pulses by

increasing the number of the harmonics involved in the computations in the signal

generator.

The pulse propagation solution for the complex acoustic pressure field and the

resulting output time-domain pulse at the center element of the receive array due to

all transmitted frequency components is discussed next.

The expression for the time-harmonic acoustic pressure at time t and spatial

location r can be written as

p(t,r) = P(f,r)e+j2,f t (2- 21)

If we compare Eq. (2-21) with Eqs. (2-1) and (2-12), then

P~~)= 4 0 (2-22)2Pff' 0 r_1:j sin(k.',., zo)H o2(k,,,. r) sin( k.2,. z) (2- 22)

for the pressure-release surface with a rigid bottom model and

PNt-I

P(f,_) = -j- E En-1sin(k,,,.zo)Ho2 (k12,r)sin(kZ2.,z) (2-23)
n=O



for the pressure-release surface with a fluid bottom model. Therefore, the complex

acoustic pressure field at time t and position r due to a transmitted pulse is given by

At,= f 0 X(f)P(f,)e+2lftdf (2- 24)

where the term P(f, r)e+ji2lfI is the time-harmonic solution and X(f) is the complex

frequency spectrum of the real transmitted bandpass signal x(t). The frequency

spectrum X(f) is related to the complex frequency spectrum X(f) of the complex

envelope i(t) as follows :

X(f) = f0)+ + fo)]} (2- 25)

where f, is the carrier frequency of the transmitted signal [Ref. 7:pp. 187-188].

The signal generator represents the complex envelope i(t) by a finite Fourier

series
K

r(t)- o Cq, Itl < To (2-26)
q=-K

where cq is the complex Fourier coefficient at harmonic q, fo is the fundamental

frequency in hertz of the transmitted pulse, and T0 = 1/fo is the fundamental period

in seconds [Ref. 6]. The integer K defines the highest harmonic number required to

represent the baseband complex envelope of the transmitted signal.

With the use of Eq. (2-26), the complex frequency spectrum X(f) of the

complex envelope is given by
K

X(f) E Cqb(f - qfo) (2-27)
q=-K

and, as a result,
K

X(f - fe) E cq6[f - (fY + qf0)] (2- 28)
q--K

The complex conjugate frequency spectrum X(f) of the complex envelope is given

by
K

X*(f) = * c,(f - qfo) (2 - 29)
q=-K

12



and, as a result,
K

x*[[-(f + f0)I = Z Cq6[f + (f, + qfo)] (2-30)
q=-K

since

6[-(f + f + qfo)] = 61f + (fe + qfo)] • (2 - 31)

Next, by using Eqs. (2-25), (2-27) and (2-30) in Eq. (2-24), it can be written as

p(t,r) = 2J -c5[f - (f + qfo)]P(f,r)e+j2wftdf
q

+ , cq-[f + (fc + qfo)JP(f,r)e+j2-, tdf (2 - 32)
2- q

or

p(t, r) - cqP(f, + qfo, r)e+J2rqfOte+
j 2 irf ct

q

+ cP[-(fe + qfo),]e -27rq fote- j 2rfct (2 - 33)

Since it can be shown that

P[-(f + qfo) ,r] = P*(f, + qfo ,r) (2-34)

by using Eq. (2-34) in Eq. (2-33), it can be written as

p(t, r) = 1 {cqP(fc + _ + [cqP(f o _), j2 qft + 2rft]*
q

(2-35)

or

p(t, r) = Re{ZcqP(fc + qfd j7qftej7f. (2-36)

since for any arbitrary complex quantity Z, it is known that

Re{Z} = I(Z + Z). (2-37)
2

Finally, the pulse propagation solution for the complex acoustic pressure field due to

all transmitted frequency components is given by

p(t,r) = Re{(t,r )e+j2rfc} (2-38)

13



where
K(t,r__) = E cqp(f: + qfo ,r)e+ j 2 q ot (2-39)

r)q=-K (-9

The function of an individual pointrelement (hydrophone) in a receive array is to

convert an acoustic pressure signal into an electrical output signal. For the purposes

of this thesis, the resulting output electrical signal is assumed to be

y(t, r)= p(t, r) (2-40)

which implies that there are no losses in the conversion from acoustic to electric power

at the receiving element (hydrophone).

The peak acoustic pressure amplitude Po at the omnidirectional point source,

which is involved in Eqs. (2-1) and (2-12) for the calculation of the time-harmonic

complex acoustic pressure field for both models, is set equal to one pascal, that is,

P = 1 Pa. This implies that a single frequency component of f hertz with amplitude

of 1 volt produces a peak acoustic pressure of 1 pascal at the source. The information

.oncerning the amplitudes of the various frequency components contained in the

transmitted electrical signal x(t) is accounted for in the Fourier coefficients of the

complex envelope i(t).

In order to implement the pressure-release surface with a fluid bottom model,

the roots of the transcendental equation given by Eq. (2-14) must be calculated nu-

merically. For that purpose, the IMSL (MATH/LIBRARY) routine ZBREN/DZBREN

was used. The transcendental equation given by Eq. (2-14) is defined as a function

of 02 where 0c 02 < 1. A graphical representation of the transcendental equation

and the location of the zero crossings, which are the roots, are shown in Fig. 2.3 for

two typical cases. The use of the IMSL routine ZBREN/DZBREN will be discussed

next.

14
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First, the left-hand side of the transcendental equation

T(02 ) = tan (2.rf Dcos021 + p3c3 coS 0 , 3 > C2 , 0 5 02 <S(Vsm9oo\ - 1
PC ain~c

(2-41)

is sampled with the first sample taken very close to 0,. The reason for this is to

eliminate the possibility of missing a root very close to P.. The sampling is terminated

with the last one taken at 90'. The sampled values of the function T(02) are stored

in an array. Next, the program checks the sign of each sample in the array in order to

find two consecutive samples with opposite signs. These two values are then passed

to the DZBREN routine. The DZBREN routine is a double precision routine and it

is able to find a zero of a real function which changes sign in a given interval. The

routine calculates the root which is included in the given interval to the accuracy

specified by the user. After the first root of the function T(02) is calculated, the

next array element to be put through the checking procedure is increased by a step

size whose value corresponds to the distance A02 = (900 - O)/Nt. This distance

gives an estimation, in degrees, of how much apart the roots are located. The above

mentioned step is calculated as INT[AO2/2d], where d is the interval between the

samples of the T(02) function. This is done to avoid wasting the computer's time

in performing unnecessary sign checking. After a new root has been calculated, the

algorithm checks if the total number of the expected roots Nt has been reached. The

procedure is followed until all the roots are calculated. The total number of roots

should be eq ial to the value of Nt , where the root 02 = 900 is not included, since this

normal mode does not contribute to the total acoustic field. The first root, which

corresponds to the normal mode n = 0, is the one closest to 900.

16



The computer simulation program for both models has been developed by in-

corporating the mathematical equations discussed in Sections A and B, and the sup-

plementary information of the present section.

17



III. COMPUTER SIMULATION RESULTS

In this chapter, the computer simulation results for each model axe presented

and discussed. The models were examined under a relatively wide range of dif-

ferent cases. Both of the models were tested for various transmitted signals, that

is, Hamming-envelope and rectangular-envelope continuous wave (CW) and linear-

frequency-modulated (LFM) pulses. The models were also tested for various locations

of the receiver, that is, the receiver was located at different ranges (short-range and

long-range) and also at different depths (above and below the source). For all the

test cases, that are presented in this thesis, the source is an omnidirectional point

source located at the rectangular coordinates (0,0,zo), where the depth z0 is set to

zo = 30 m. The receiver is a 9x9 planar array of point elements (hydrophones) and

it is shown in Fig. 3.1. The receive array is was placed at two different ranges (i.e.,

short-range: XR = 1000 m, and long-range: XR = 10000 m) and also at two different

depths (i.e., above the source: ZR = 20 m, and below the source: ZR = 80 m). The

depth of the ocean was set to D = 100 m.

The transmitted signals for the test cases are well known and they are briefly

summarized as follows:

A continuous-wave (CW) pulse is described by [Ref. 7:pp. 193-195]

x(t) = a(t)cos(2rfct) Iti 1 1 (3- 1)

2

where Tp is the pulse length in seconds, f, is the carrier frequency in hertz, and a(t)

is the amplitude modulating signal.

A linear-frequency-modulated (LFM) pulse is described by [Ref. 7:pp. 195-197]

x(t) = a(t)cos[27rfct + 0(t)] Itl 1 Te_ (3 - 2)

18
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where the angle-modulating signal or phase deviation O(t) is given by

9(t) = bt 2  (3-3)

where b is the phase-deviation constant, in radians per square second. When b > 0,

the LFM pulse is called an "up chirp" and when b < 0 it is called a "down chirp".

The quantity bTp/ir is referred to as the swept bandwidth in hertz.

The Hamming-envelope is a commonly used envelope and the corresponding

amplitude modulating signal a(t) is given by

a(t) =A 0.54 + 0.46cos Tv , Iti _< T2- (3-4)

where A (a constant) is the amplitude of the transmitted electrical pulse. For the

rectangular-envelope case, the amplitude modulating signal is given by

a(t) = A , It I !< _T_ (3- 5)

The computer simulation results that are used in order to compare the two

models for all the test cases are (i) the output time-domain electrical pulse from the

center element in the receive array and (ii) the characteristics of the complex acous-

tic pressure field (magnitude and phase as a function of frequency at each point of

the field) when the previously mentioned input electrical signals at the source are

transmitted through each model. There are also some other simulation results, which

give additional information about the propagation of the transmitted pulses through

the two models. These additional simulation results for both models include (i) the

group speed, time of arrival, etc., of the propagating modes for three characteristic

frequencies (i.e., lowest, carrier, and highest) of the frequency spectrum of the trans-

mitted pulse, and for the fluid bottom model, (ii) a graphical representation of the

transcendental equation for these three frequencies. The results of the various test

cases will be presented and discussed in the following order:
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* Hamming-envelope CW pulse propagation using the rigid and the fluid bottom

models in the short range (receiver located above and below the source).

* Hamming-envelope CW pulse propagation using the fluid bottom model in the

long range (receiver located above and below the source).

* Hamming-envelope LFM pulse propagation using the rigid and the fluid bottom

models in the short range (receiver located above and below the source).

* Hamming-envelope LFM pulse propagation using the fluid bottom model in the

long range (receiver located above and below the source).

e Rectangular-envelope CW pulse propagation using the fluid bottom model in

the long range (receiver located above and below the source).

* Rectangular-envelope LFM pulse propagation using the fluid bottom model in

the long range (receiver located above and below the source).

A. HAMMING-ENVELOPE PULSES

1. Continuous-wave (CW) pulse

The transmitted electrical signal is a Hamming-envelope CW pulse and it is

shown in Fig. 3.2. The transmitted pulse was generated by the signal generator

subprogram [Ref. 6]. The characteristics of the pulse shown in Fig. 3.2 and the

notation are as follows:

Amplitude A = 10.0

Pulse Length Tp = 100.0 msec

Carrier frequency fc = 250 Hz

Pulse repetition frequency (PRF) or fundamental frequency fo = PRF =

0.4 Hz
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Number of harmonics NFREQ = 101

The parameter NFREQ defines the total number of harmonics required to rep-

resent the baseband complex envelope of the transmitted electrical signal in order to

synthesize the pulse. The value of this parameter gives an indication about the ex-

pected complexity of the involved computations performed by the computer program,

and about the size of the required computer memory. In other words, when the value

of the parameter NFREQ is increased, then the computation time is longer and larger

memory is required for the execution of the program. For the case shown in Fig. 3.2,

the lowest frequency component of the set of harmonics required to represent the

transmitted signal is f = 230 Hz, and the highest is f = 270 Hz.

The short range (i.e., XR = 1000 m) results of the rigid bottom model are pre-

sented first. The numerical results computed by the program concerning the propa-

gating modes of the lowest (f = 230 Hz), the carrier (f = 250 Hz), and the highest

(f = 270 Hz) frequency components are shown in Tables 3.1, 3.2 and 3.3. These

results are presented only once, that is, for this case only. The involved parameters

and the notation used in these tables are as follows:

MODES: Total number of propagating modes Np [see Eq. (2-7)]

K2: Wave number k2 [see Eq. (2-3)]

N: Individual mode number

FN: Cutoff frequency f, for the nth mode [see Eq. (2-6)]

THETA2N: Angle of propagation 02,n for the nth mode [see Eq. (2-8)]

KR2N: Propagation vector component k,2.n in the radial direction for the nth

mode [see Eq. (2-5)]

KZ2N: Propagation vector component k. 2,. in the z-direction for the nth mode

[see Eq. (2-4)]

CGR2N: Group speed Cg. 2, in the radial direction for the nth mode [see

23
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Eq. (2-9)]

EN: Energy E, of the nth mode [see Eq. (2-10)]

TR2N: Time of arrival t,.2 ,n of the nth mode [see Eq. (2-11)].

The numerical results shown in Tables 3.1, 3.2 and 3.3 characterize the way the

allowed modes for the frequencies f = 230 Hz, f = 250 Hz and f = 270 Hz propagate

through the model.

The complex acoustic pressure (magnitude and phase) across the elements of

the receive array for the carrier frequency (f = 250 Hz) at the two locations of the

receiver are presented by the 3-D plots in Fig. 3.3 and 3.4. Figures 3.3 and 3.4 show

how different the magnitude of the resulting acoustic pressure field is, depending on

the depth of the receiver for the same horizontal range.

In the rigid bottom model the allowed angle of propagation for the nth normal

mode can be in the range 00 < 02,n < 900 and it is restricted only by the cutoff

frequency f, for that mode. Some frequency components which are very close to the

cutoff frequency f, of the nth mode will propagate at very small propagation angles

(i.e., in the range 00 - 100 ). Therefore, the effects of these frequency components

are expected to take more time to appear in the received pulse. As a result, the

fundamental frequency fo of the transmitted pulse must be chosen small enough in

order that all frequency components, propagating at various modes and angles, arrive

at the receiver within the fundamental period To = 1/fo seconds.

The resulting output time-domain pulses from the center element of the receive

array for fo = 0.4 Hz and for the two receiver locations are shown in Fig. 3.5.

In order to increase the fundamental period To, an attempt was made of using

fo = 0.2 Hz. The transmitted electrical signal for fo = 0.2 Hz is shown in Fig. 3.6.

The number of harmonics required to represent this signal is NFREQ = 201. The

resulting output time-domain pulses from the center element of the receive array for
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CRSE:RIGIO FREQUENCY: 250.0 HZ

ZT: 30.0 h XR: 1000.0 IM YR: 0.0 H ZR: 20.0 M

(a)

CASC:R[GIO FREQUENCY: 250.0 HZ

ZT: 30.0 M XR: 1000.0 M YR; 0.0 IM ZR: 80.0 1

(b)
Figure 3.3 Rigid bottom: Magnitude of the complex acoustic pressure field
for Hamming-envelope CW pulse for (a) receiver above the source and (b)
receiver below the source.
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CASE: RI GIOD FREOuIENCY: 250.0 HZ

ZT: 30.0 M XR: 1000.0 M YR- 0.0 H ZR: 20.0 M

(a)

CRSE:R1610 rREOUENCY: 250.0 HZ

ZT: 30.0 M XR: 1000.0 H YR: 0.0 M ZR: 80.0 M

(b)

Figure 3.4 Rigid bottom: Phase of the complex acoustic pressure field for
Hamming-envelope OW pulse for (a) receiver above the source and (b)
receiver below the source.
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fo = 0.2 Hz and for the two receiver locations are shown in Fig. 3.7.

The output electrical signals in Figs. 3.5 and 3.7 are plotted as a function of

the retarded time, in msec, where the retarded time is defined as

HRZRNG (3-6)

C2

where HRZRNG is the horizontal range between the source and the receive array,

and c2 is the speed of sound in the ocean.

It is evident from the results shown in Fig. 3.7 that the fundamental frequency

fo = 0.2 Hz is not small enough to represent the overall received signal. In order to

increase further the fundamental period To, an attempt was made of using fo = 0.1 Hz

and both the transmitted and resulting output signal for the receiver above the source

are shown in Fig. 3.8. Note the number of harmonics (NFREQ = 401) required to

represent this transmitted pulse. However, it must be mentioned that, although this

simulation case (fo = 0.1 Hz) execution was completed, an extremely large memory

area and a very long computational time were required. Since it is ineffective for the

purposes of the present thesis try to execute such cases, the rigid bottom model was

tested for fo = 0.4 Hz and for short range cases only in the remaining test cases. The

output results of the rigid bottom model for fo = 0.4 Hz are representative enough

in order to compare the effectiveness of the two models.

Next, the fluid bottom results are presented. The transmitted electrical signal

for fo = 2.5 Hz is shown in Fig. 3.9. The number of harmonics required to represent

this pulse is NFREQ = 17. A graphical representation of the transcendental equation

for the frequencies f - 230 Hz (lowest), f = 250 Hz (carrier) and f = 270 Hz (highest)

is presented in Figs. 3.10, 3.11, and 3.12, respectively. The parameter THETAC

refers to the critical angle 0, of incidence. The values of the transcendental equation

vary from +oo to -oo but, in order to present the function clearly, it has been
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Figure 3.7 Rigid bottom: Output signal for Hamming-envelope OW pulse
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Figure 3.10 Fluid bottom: Transcendental equation for the lowest fre-
quency f = 230 Hz.
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truncated in the range of ± 10. The expected locations of the roots of the equation

are easily recognized at the zero-crossing points of the function. The numerical results

characterizing the allowed propagating modes for the lowest frequency f = 230 Hz,

the carrier frequency f = 250 Hz and the highest frequency f = 270 Hz axe shown in

Tables 3.4, 3.5 and 3.6.

The notation used in these tables and the involved parameters are as follows:

MODES: Total number of trapped modes Nt [see Eq. (2-19)]

K2: Wave number k2 [see Eq. (2-3)]

N: Individual mode number

FN: Cutoff frequency f, for the nth mode [see Eq. (2-18)]

THETA2N: Angle of propagation 02,n for the nth mode [see Eq. (2-14)]

KR2N: Propagation vector component k'2,. in the radial direction for the nth

mode [see Eq. (2-16)]

KZ2N: Propagation vector component k.2,. in the z-direction for the nth mode

[see Eq. (2-17)]

CGR2N: Group velocity C,,,. in the radial direction for the nth mode [see

Eq. (2-20)]

EN: Energy E,, of the nth mode [see Eq. (2-13)]

TR2N: Time of arrival t,.n of the nth mode [see Eq. (2-11)]

By looking at these tables, it is verified that the roots of the transcendental

equation (i.e., the angles of propagation 02,n, which have been numerically calculated

by the computer program) agree with the expected locations determined in Figs.

3.10, 3.11, and 3.12. Note also that the propagating modes are restricted by two

factors, i.e., the cutoff frequency fn and the critical angle of incidence 0,. Tberefore,

for the fluid bottom model there are no modes propagating with angles smaller than

the critical angle 0,.
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The complex acoustic pressure field (magnitude and phase) across the elements

of the receive array for the carrier frequency and the two locations of the receiver axe

shown in Fig. 3.13 and 3.14. It is shown again that the depth of the receiver has a

definite effect in the resulting acoustic pressure field.

The resulting output pulses at the center element of the array for the two cases

are shown in Fiq. 3.15. The duration of the resulting output pulse is about 200 msec

long, while for the rigid bottom model a time window of length 10 sec is not long

enough to present the complete output signal for that model. The reason is that the

number of allowed propagating modes for the rigid botton model are about twice as

many as for the fluid bottom model. As a result, it takes these additional modes in

the rigid bottom model longer to reach the receiver.

In order to investigate further the efficiency of the fluid bottom model, the long

range results are presented next. The transmitted signal for fo 0.8 Hz is shown

in Fig. 3.16. The number of harmonics for this case is NFREQ = 51. The acousLic

pressure field (magnitude and phase) across the receiver for the carrier frequency and

for the two depths of the receiver is shown in Fiq. 3.17 and 3.18.

The resulting output pulses at the center element of the array for the two depths

of the receiver are shown in Fig. 3.19. The duration of the output pulse is about 1000

msec long. Therefore, the output pulse is 10 times longer than the transmitted pulse

(TP = 100 msec). The shape of the transmitted pulse is distorted at the receiver due

to dispersion effects. These effects are more evident in the long range case compared

to the short range results shown in Fig. 3.15. It is also interesting to observe how

different the shape of the output pulse is at the same range but at two differrent

receiver depths.
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CASE: FLUIO FREOUENCY: 250.0 HZ

ZT: 30.0 M XR: 1000.0 m YR: 0.0 M ZR: 20.0 M

(a)

o

CASE:FLUIO FREOUENCY: 250.0 HZ

ZT: 30.0 M XR: 1000.0 m YR: 0.0 M ZR: 80.0 M

(b)

Figure 3.13 Fluid bottom: Magnitude of the complex acoustic pressure
field for Hamming-envelope CW pulse for (a) receiver above the source
and (b) receiver below the source.
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Figure 3.14 Fluid bottom: Phase of the complex acoustic pressure field
for Hamming-envelope OW pulse for (a) receiver above the source and (b)
receiver below the source.
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OUTPUT PULSE AT ELEMIENT (0,0)
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Figure 3.15 Fluid bottom: Output signal for Hamming-envelope CW pulse
(fo = 2.5 Hz) for (a) receiver above the source and (b) receiver below the
source.
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CASE: FLUID FREOUENCY: 250.0 HZ

ZT: 30.0 M XR: 10000.0 M YR: 0.0 M ZR: 20.0 M

(a)

For

CHSE:FLUIO FREOUENCY: 250.0 HZ

ZT: 30.0 M XR: 10000.0 M YR: 0.0 M ZR: 80.0 M

(b)
Figure 3.17 Fluid bottom: Magnitude of the complex acoustic pressure
field for Hamming-envelope OW pulse for (a) receiver above the source
and (b) receiver below the source.
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CASE: FLUIO FREOUENCY: 250.0 HZ
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CASE: FLUID FREOLUENCY: 250.0 HZ

ZT: 30.0 M XR: 10000.0 Mi YR: 0.0 M ZR: 80. 0 M

(b)

Figure 3.18 Fluid bottom: Phase of the complex acoustic pressure field
for Hamming-envelope OW pulse for (a) receiver above the source and (b)
receiver below the source. 4
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2. Linear-frequency-modulated (J4FM) pulse

The transmitted electrical signal is a Hamming-envelope LFM pulse and it is

shown in Fig. 3.20. The characteristics of the pulse and the notation are the same

as for the CW pulse case. Additionally, the parameter SWPTBW refers to the swept

bandwidth of the LFM pulse and the parameter CHIRP defines whether the pulse is an

"up chirp" or "down chirp". The transmitted pulse is an "up chirp" with SWPTBW

= 80.0 Hz. For the pulse shown in Fig. 3.20, more harmonics are required to represent

its complex envelope (NFREQ = 301) compared to the CW pulse shown in Fig. 3.2.

This implies that the computer simulation of an LFM pulse is more complicated and

more computation time is required for the program execution than for the CW pulse

case.

Next, the rigid bottom model results for the short range case are presented. The

transmitted Hamming-envelope LFM pulse for fo = 0.4 Hz is shown in Fig. 3.20. The

complex acoustic pressure field across the elements of the receive array for the carrier

frequency and for the two locations of the receiver are presented by the 3-D plots in

Fig. 3.21 and 3.22.

The resulting output time-domain pulses from the center element of the receive

array and for the two receiver locations are shown in Fig. 3.23. These results are

similar to the Hamming-envelope CW pulse, i.e., the duration of the resulting pulse

is too long to fit into this time window of length To = 1/fo = 2500 msec. Again,

there are some modes propagating at very small angles and, as a result, these modes

need a long time to reach the receiver.

Next, the fluid bottom model results are presented. The transmitted electrical

signal for the short range case is shown in Fig. 3.24. For this case the number of

harmonics is NFREQ = 49. The lowest frequency is f = 190 Hz and the highest is

f = 310 Hz. The complex acoustic pressure field (magnitude and phase) across the
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Figure 3.20 Hamming-envelope LFM pulse (fo = 0.4 Hz).
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CASERIGIO FREQUENCY: 250.0 HZ
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(b)
Figure 3.22 Rigid bottom: Phase of the complex acoustic pressure field
for Hamming-envelope LFM pulse for (a) receiver above the source and
(b) receiver below the source.
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Figure 3.24 Hamming-envelope LFM pulse (fo = 2.5 Hz).

56



receiver for the carrier frequency and for the two receiver depths is shown in Fig. 3.25

and 3.26.

The resulting output pulses at the center element of the receive array are shown

in Fig. 3.27. The output pulse is about 200 msec long and it is twice as long as the

transmitted pulse (Fig. 3.24), due to dispersion effects. Note again that the depth

where the receiver is located affects greatly the shape f the received signal.

The fluid bottom model results for the propagation of a Hamming-envelope

LFM pulse for the long range case are presented next. The transmitted electrical

signal for fo = 0.8 Hz is shown in Fig. 3.28. For this case, the number of harmonics

is NFREQ = 151. The complex acoustic pressure field (magnitude and phase) across

the receive array for the carrier frequency and the two receiver depths is shown in

Fig. 3.29 and 3.30.

The resulting output pulses at the center element of the receiver for the two re-

ceiver locations are shown in Fig. 3.31. The output pulse is approximately 1000 msec

long as for the Hamming-envelope CW pulse in the long range case. The dispersion

effects and the distortion are again more evident in the long range case compared to

of the short range case.

The performance of both models (i.e., the rigid bottom and the fluid bottom)

for the propagation of the two different pulses ( i.e., the CW and the LFM pulse)

with the same envelope function (i.e., the Hamming-envelope) has been investigated

in this section. Based on the computer simulation results, the conclusions are (i)

CW pulse propagation is easier to implement than LFM pulse propagation since

less harmonics are involved in the CW pulse representation, (ii) the depth of the

receiver affects the shape of the output signal and the complex acoustic field across

the array elements, (iii) the transmitted electrical pulse is distorted at the receiver

due to dispersion effects, and these are more evident in the long range case, and (iv)
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Figure 3.25 Fluid bottom: Magnitude of the complex acoustic pressure
field for Hamming-envelope LFM pulse for (a) receiver above the source
and (b) receiver below the source.
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Figure 3.26 Fluid bottom: Phase of the complex acoustic pressure field for
Hamming-envelope LFM pulse for (a) receiver above the source and (b)
receiver below the source.
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Figure 3.28 Hamming-envelope LFM pulse (fo = 0.8 Hz).
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CASE: FLUIO FRE0UENCY: 250.0 HZ
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(b)

Figure 3.29 Fluid bottom: Magnitude of the complex acoustic pressure
field for Hamming-envelope LFM pulse for (a) receiver above the source
and (b) receiver below the source.
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Figure 3.30 Fluid bottom: Phase of the complex acoustic pressure field for
Hamming-envelope LFM pulse for (a) receiver above the source and (b)
receiver below the source.
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the amplitude of the output time-domain electrical signal depends on the range where

the receiver was placed, that is, the amplitude of the output signal in the long range

case is smaller compared to the short range case for each model and for the same

transmitted electrical signal.

B. RECTANGULAR-ENVELOPE

1. Continuous-wave (CW) pulse

The transmitted electrical signal is a rectangular-envelope CW pulse with Lanc-

zos smoothing and it is shown in Fig. 3.32 for fo = 2.5 Hz and fo = 0.8 Hz. These

pulses have the same parameter values as with the Hamming-envelope CW pulses

shown in Figs. 3.9 and 3.16. It is shown in Fig. 3.32 that for both pulses, more

harmonics are required compared to the Hamming-envelope CW pulses. This is due

to the discontinuities at the beginning and the end of the rectangular envelope and,

therefore, more harmonics are needed in order to represent the pulse accurately.

The propagation of this pulse is investigated using the fluid bottom model for

the long range case. The long range case was chosen since this case is generally

more realistic and more interesting from an application point of view than the short

range case. As in the previous section, the receiver is located at two different depths,

i.e., above and below the source. In order to be able to observe the overall received

electrical signal, the pulse is transmitted over the fundamental period To = 1/fo =

1/0.8 = 1250 msec.

The complex acoustic pressure field (magnitude and phase) across the receive

array for the carrier frequency and for both receiver depths is shown in Figs. 3.33

and 3.34. The 3-D plots show how the magnitude and phase of the acoustic pressure

changes, over the array elements when the depth of the receiver changes.

The resulting output electrical signal at the center element of the array for
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Figure 3.32 Rectangular-envelope CW pulses: (a) fo6 2.5 Hz and (b) fo
=0.8 Hz.
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I,.,

CHSE:FLUID FREOUENCY: 250.0 HZ

ZT: 30.0 M XR: 10000.0 M YR: 0.0 M ZR: 20.0 M1

(a)

CASE: FLUI10 FREOUENCY: 250.0 HZ

ZT: 30.0 M XR: 10000.0 m YR: 0.0 MI ZR: 80.0 MI

(b)

Figure 3.33 Fluid bottom: Magnitude of the complex acoustic pressure

and (b) receiver below the source.
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a(a

CHSE: FLU 10 rREOUENCY: 250.0 HZ

ZT: 30.0 M XR: 10000.0 M YR: 0.0 Mi ZR: 20.0 M

(b)

Figure 3.34 Fluid bottom: Phase of the complex acoustic pressure field for
rectangular-envelope OW pulse fbr (a) receiver above the source and (b,)
receiver below the source.
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the two receiver depths is shown in Fig. 3.35. As for the Hamming-envelope case,

the duration of the output pulse is approximately 1000 msec long, due to dispersion

effects. It is also observed that the shape of the received pulse depends greatly on

the depth of the receiver.

2. Linear-frequency-modulated (LFM) pulse

The rectangular-envelope LFM pulses with Lanczos smoothing for fo = 2.5 Hz

and fo = 0.8 Hz are shown in Fig. 3.36. A LFM pulse requires more harmonics in

order to represent its complex envelope compared to a CW pulse.

The long range case was also chosen in order to present the performance of the

fluid bottom model. The transmitted pulse has a fundamental frequency of fo = 0.8

msec. The complex acoustic pressure field (magnitude and phase) across the receive

array for the carrier frequency and for both receiver depths is shown in Fig. 3.37 and

3.38. The resulting output electrical signal at the center element of the array for the

two receiver depths is shown in Fig. 3.39.

The performance of the fluid bottom model under the propagation of the rectangular-

envelope CW and LFM pulses for the long range case has been examined in this sec-

tion. Based on the computer simulation results, the conclusions are (i) the rectangular-

envelope function is more complicated to simulate than the Hamming-envelope since

more harmonics must be included, (ii) the shape of the complex acoustic pressure

field across the receive array and the output electrical signal are affected greatly by

the depth of the receiver, and (iii) the CW pulse has been easier to simulate since

less computer memory space and computation time are required.
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I5
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C0ISE:FtI 0 FREIJUENCY: 250.0 HZ

ZT: 30.0 M XR: 10000.0 M YR: 0.0 M ZR: 80.0 A

(b)

Figure 3.37 Fluid bottom: Magnitude of the complex acoustic pressure
field for rectan gu lar- envelope LFM pulse for (a) receiver above the source
and (b) receiver below the source.
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CASE: PLUIO FREOUENCY: 250.0 HZ
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Figure 3.38 Fluid bottom: Phase of the complex acoustic pressure field for
rectangular-envelope LFM pulse for (a) receiver above the source and (b)
receiver below the iource.
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IV. CONCLUSIONS AND
RECOMMENDATIONS

The pressure-release surface with a rigid bottom model is a simple ocean waveg-

uide model from an analytical point of view. The mathematical equations of this

model are not complicated and they have been relatively easy to program. However,

it is well known that this model is not realistic since the rigid bottom assumption

is not valid. Also, the computer simulation results of the model have shown that

the model is not easily simulated since an extremely large memory area and long

computation time are required. The reason is that many normal modes are allowed

to propagate. Typically, the number of allowed propagating modes in the rigid bot-

tom model are about twice as many as the the number of trapped modes allowed

to propagate in the more realistic fluid bottom model using the same transmitted

electrical signal. Therefore, the rigid bottom model simulation results are, in general,

unrealistic, since due to the dispersion effects, the duration of the resulting output

pulse at the receiver is more than 100 times longer than the transmitted pulse.

The fluid bottom model is more complicated from an analytical point of view

since the transcendental equation (Eq. 2-14) is involved. The roots of the transcen-

dental equation must be numerically calculated in order to simulate the model by a

computer program. It was known that this model is a more realistic one, compared

to the rigid bottom model. The computer simulation results have verified that it

performs much more accurately and correctly, than the rigid bottom model [Ref. 8].

Also, the fluid bottom model is easier to implement without extreme memory space

and long computation time requirements.

The pulse propagation computer simulation program which has been used to
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investigate the two models is able to simulate a variety of commonly used envelope

functions, such as the (i) rectangular-envelope, (ii) rectangular-envelope with Lanczos

smoothing, (iii) Hamming-envelope, and (iv) Hanning-envelope. In this thesis, we

have chosen to present the results of the test cases using envelope functions (ii) and

(iii) only, as the representative cases from the whole group. The other envelope

functions have been tested also and they perform effectively.

It is recommended that no further research work be done on the rigid bottom

ocean waveguide model since it is not a very realistic model. However, research work

should continue on the fluid bottom ocean waveguide model. For example, work

should continue on incorporating the effects of attenuation (sound absorption) and

arbitrary sound-speed profiles into the model.

76



REFERENCES

1. C. S. Clay and H. Medwin, Acoustical Oceanography, Wiley, New York, 1977,
pp. 288-317.

2. L. E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders, Fundamentals of
Acoustics, Wiley, New York, 1982, pp. 430-440.

3. L. J. Ziomek, course notes for EC3450, Acoustic Field Theory, Naval Postgrad-
uate School, Monterey, CA.

4. M. B. Porter, R. L. Dicus, and R. G. Fizell, "Simulations of matched-field
processing in a deep-water Pacific environment", IEEE J. Oceanic Engr., Vol.
OE-12, 173-181 (1987).

5. A. B. Baggeroer, W. A. Kuperman, and H. Schmidt, "Matched-field processing:
Source localization in correlated noise as an optimum parameter estimation
problem", J. Acoust. Soc. Am., Vol. 83, 571-587 (1988).

6. Campbell, Peter R. M., Master's Thesis, Naval Postgraduate School, Monterey,

CA, June 1989.

7. L. J. Ziomek, Underwater Acoustics, Academic Press, Orlando, FL, 1985.

8. L. J. Ziomek, L. A. Souza, and P. R. Campbell, "Pulse propagation in a random
ocean - A linear systems theory approach", OCEANS '89, September 18-21,
1989, Seattle, Washington USA, pp. 1211-1216.

77



INITIAL DISTRIBUTION LIST

No. of Copies
1. Defense Technical Information Center 2

Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93943-5002

3. Chairman, Code 62 1
Department of Electrical and
Computer Engineering
Naval Postgraduate School
Monterey, California 93943-5000

4. Prof. L. J. Ziomek, Code 62Zm 3
Department of Electrical and
Computer Engineering
Naval Postgraduate School
Monterey, California 93943-5000

5. Prof. H-M. Lee, Code 62Lh 1
Department of Electrical and
Computer Engineering
Naval Postgraduate School
Monterey, California 93943-5000

6. Dr. Marshall Orr, Code 11250A 1
Office of Naval Research
800 N. Quincy St.
Arlington, VA 22217

7. Hellenic Navy GEN/B2-III 3
Stratopedo Papagou
Holargos
Athens, Greece

78



8. Lt. Marinos P. Markopoulos 2
78 Athinodorou
K. Helioupolis
16341 Athens, Greece

79


